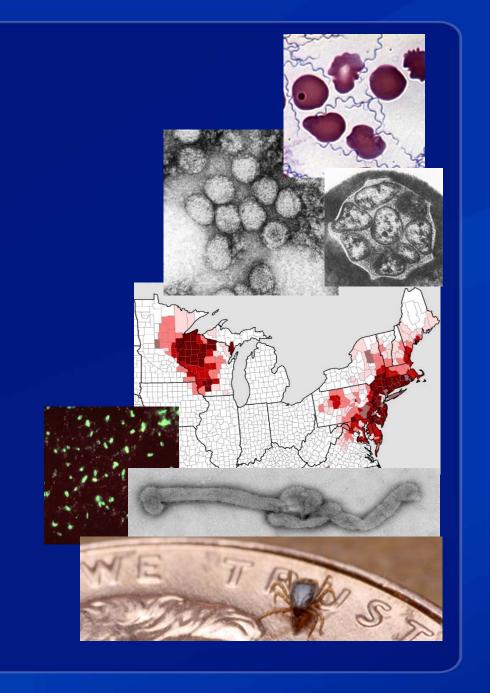
Integrated Tick Management Funding, Collaborations, and Federal Initiatives

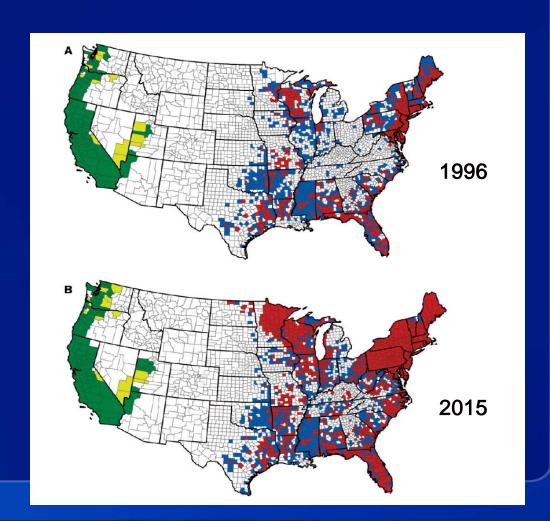


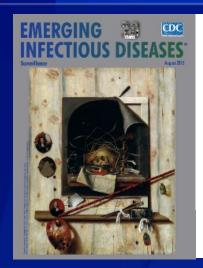
C. Ben Beard, Ph.D.
Chief, Bacterial Diseases Branch
CDC – Division of Vector-Borne Diseases

Outline

- The nature of the challenge
- Available funding
- Partners
- Initiatives

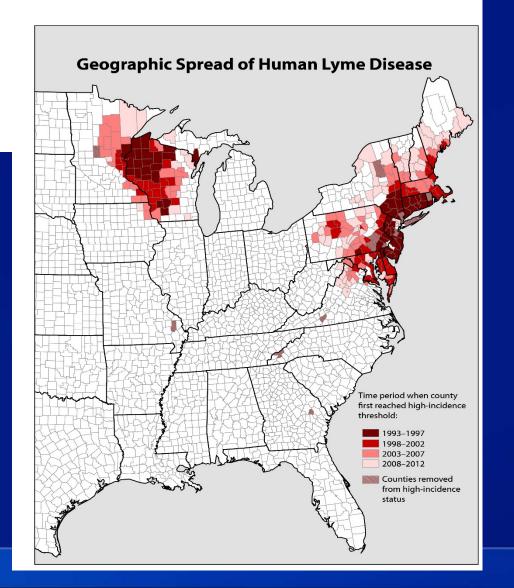
County-Scale Distribution of *Ixodes scapularis* and *Ixodes pacificus* (Acari: Ixodidae) in the Continental United States


Rebecca J. Eisen, ¹ Lars Eisen, and Charles B. Beard


Journal of Medical Entomology, 2016, 1–38 doi: 10.1093/jme/tjv237 Research article

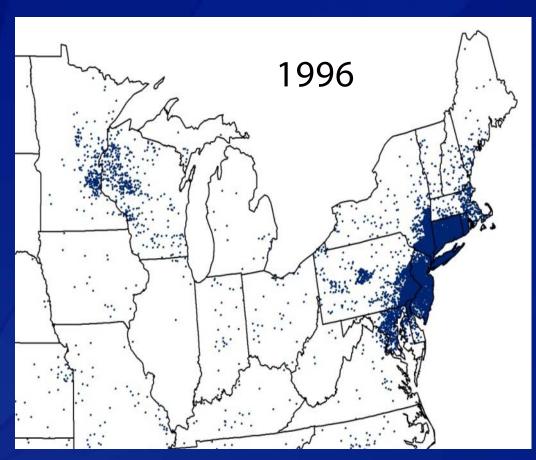
From 1996 – 2015...

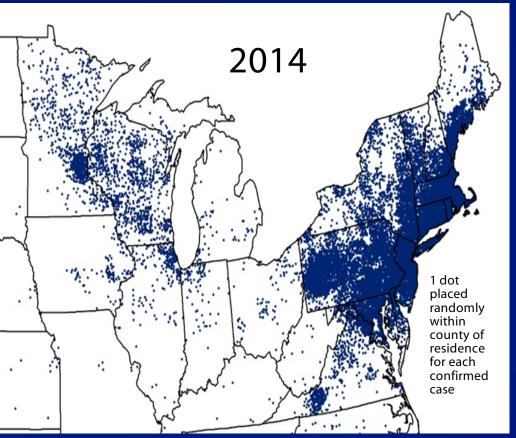
- *I. scapularis* or *I. pacificus* now found in 49.2% of counties in 43 states
- Marks a 44.7% increase in the number of positive counties
- The number of counties where I.
 scapularis is now established has more
 than doubled in the last 20 years


Geographic Distribution and Expansion of Human Lyme Disease, United States

Kiersten J. Kugeler, Grace M. Farley, Joseph D. Forrester, Paul S. Mead

Emerging Infectious Diseases; Vol. 21, No. 8, August 2015; DOI: http://dx.doi.org/10.3201/eid2108.141878


From 1993 – 2012...


- Number of high incidence counties in the northeastern U.S. increased by >320%
- Number of high incidence counties in the north-central U.S. increased by H 250%

Lyme Disease U.S. Case Distribution – 18 year Trend

Reported Cases of Vector-Borne Diseases in the U.S., 2014

Diseases	2014 Cases	Median (range) 2004-2014		
Tick-borne				
Lyme disease	33,461	30,831 (19,804 – 38,468)		
Spotted Fever Rickettsioses	3,647	2,288 (1,713 – 4,470)		
Anaplasmosis/ Ehrlichiosis	4,488	2,267 (875 – 4,551)		
Babesiosis*	1,759	1,444 (940 – 1,792)		
Tularemia	180	137 (93 – 203)		
Powassan virus disease	8	7 (1-16)		
Mosquito-borne				
West Nile virus infection	2,205	2,205 (712 – 5,673)		
Malaria*	1,653	1,494 (1,255 – 1,773)		
Dengue*	677	677 (254 – 843)		
California serogroup viruses	96	80 (55 – 137)		
Eastern Equine Encephalitis	8	8 (4 – 21)		
St. Louis encephalitis	6	10 (1-13)		
Flea-borne				
Plague	10	4 (2 – 17)		

^{*}Dengue and malaria cases are primarily imported. Babesiosis and Dengue have only been notifiable since 2011 and 2009, respectively. Median and range values encompass cases reported from 2011 to 2014 for Babesiosis and 2010 to 2014 for dengue.

Lyme Disease in the U.S. – Current State of Affairs

- The case numbers are higher than they have ever been
- The geographic case distribution is more extensive than ever in the past
- There is significant polarization among key stakeholders
- There is currently no 'magic bullet' that is effective for disease prevention and control
- Fewer scientists (entomologists in particular) specializing in TBDs
- Less research being conducted on TBDs
- Less general interest and awareness in the academic community
- Tick control is largely seen as a responsibility of individual homeowners with limited public support or participation

CDC's Previous National Lyme Disease prevention goal

14-8. Reduce Lyme disease.

Target: 9.7 new cases per 100,000 population in endemic States.

Baseline: 17.4 new cases of Lyme disease per 100,000 population

were reported in 1992-96.

Target setting method: 44 percent improvement. (Better than the best will be used when data are available.)

Data source: National Notifiable Disease Surveillance System (NNDSS), CDC, EPO.

Intervention strategy: National vaccine campaign (LYMErixTM)

Lyme Disease Strategic Priorities

Goal: To reduce the incidence of Lyme disease human cases in the U.S. using evidence-based prevention tools and approaches (Reestablish *Healthy People* Goal)

Strategy:

- Strengthen national surveillance and understanding disease risk and burden
- Identify, develop and evaluate prevention and control practices
- Improve early and accurate diagnosis and treatment
- Identify, characterize, and prevent illness caused by new *Borrelia* species
- Collaborate with key partners to promote the use of effective prevention tools and strategies

Funding Allocation for Tick-borne Disease Studies by Agency,

2006-2010

Agency 5-year Total

NIH/NIAID \$312,762,626

CDC \$27,865,186

NIH/NIAMS \$10,620,407

USDA/ARS \$7,181,000

NSF \$6,287,196

NIH/NINDS \$2,593,865

US Army PHC \$475,500

USDA/NWRC \$318,000

Total \$368,103,780

The Short-Term and Long-Term Outcomes

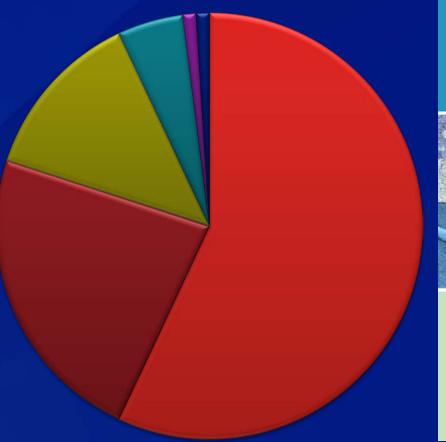
WORKSHOP REPORT

OF THE NATIONAL ACADEMIES

■ NIH/NIAID ■ CDC ■ NIH/NIAMS ■ USDA/ARS ■ NSF ■ NIH/NINDS ■ US Army Public HIth Com ■ USDA/NWRC

Annual Funding for Tick-borne Disease Studies by Agency/Organization

CRITICAL NEEDS AND GAPS IN UNDERSTANDING PREVENTION, AMELIOR ATION, AND RESOLUTION OF LYME AND OTHER TICK-BORNE DISEASES The Short Term and Long Term Outcomes


WORKSHOPREPO

Agency/Org (#)	2006	2007	2008	2009	2010	Average
NIII NI AID (404)	¢01.765.224	\$92.696.260	¢(2,747,797	\$72.562.055	(not	P.CO. 550, 505
NIH-NIAID (404)	\$91,765,324	\$83,686,260	\$63,747,787	\$73,563,255	available)	\$62,552,525
CDC (19)	\$5,706,765	\$5,631,765	\$5,614,765	\$1,226,765	\$9,685,126	\$5,573,037
					(not	
NIH-NIAMS (15)	\$2,051,376	\$2,579,209	\$2,758,608	\$3,231,214	available)	\$2,655,102
USDA-ARS (5)	\$1,424,000	\$1,428,000	\$1,447,000	\$1,376,000	\$1,506,000	\$1,436,200
NSF (5)	\$390,196	\$1,093,733	\$1,436,180	\$2,990,954	\$376,133	\$1,256,439
NIH-NINDS (4)	\$662,366	\$458,834	\$654,163	\$220,625	\$597,877	\$518,776
US Army PHC (1)	\$237,750	\$237,750	\$243,500	\$232,000	\$237,750	\$237,750
USDA-NWRC (2)					\$318,000	\$318,000
YEARLY TOTAL	\$102,000,027	\$94,877,801	\$75,902,003	\$82,840,813	\$12,483,136	\$73,620,756

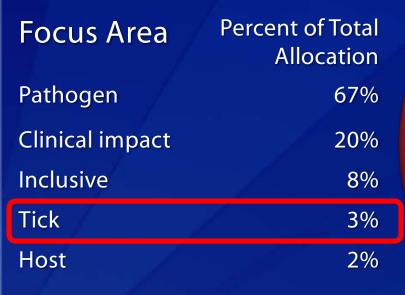
Funding Allocation for Tick-borne Disease Studies by Study Type,

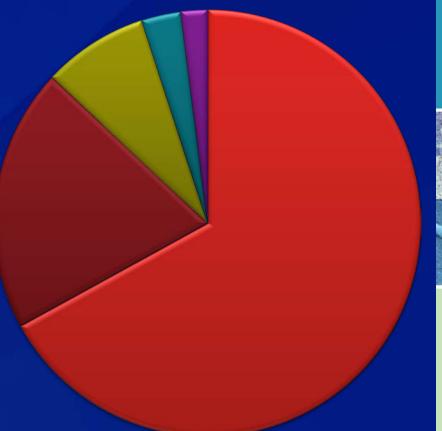
2006-2010

Focus Area	Percent of Total Allocation
Microbiological	57%
Prevention/ Education	23%
Combination	13%
Treatment	5%
Environment	1%
Surveillance	1%

CRITICAL NEEDS AND GAPS IN UNDERSTANDING PREVENTION, AMELIORATION, AND RESOLUTION OF LYME AND OTHER TICK-BORNE DISEASES

The Short-Term and Long-Term Outcomes


WORKSHOP REPORT


■ Microbiological

■ Prevention/Education ■ Combination ■ Treatment ■ Environmental ■ Surveillance

Funding Allocation for Tick-borne Disease Studies by Study Type,

2006-2010

PREVENTION, AMELIORATION, AND
RESOLUTION OF LYME AND
OTHER TICK-BORNE DISEASES

The Short-Term and Long-Term Outcomes

WORKSHOP REPORT

OF THE NATIONAL ACADEMIES

■ Pathogen ■ Clinical impact ■ Inclusive ■ Tick ■ Host

Funding Allocation for Tick-borne Disease Studies by Pathogen,

2006-2010

Percent of Total Pathogen Allocation Francisella 52% **Borrelia** 33% *Flavivirus* 5% **Erlichia** 3% Rickettsia 3% Combination 2% Babesia 1% Nairovirus .6%

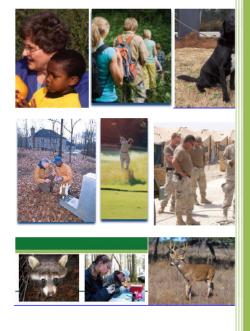
The Short-Term and Long-Term Outcomes

WORKSHOP REPORT

■ Francisella Borrelia Flavivirus Erlichia Rickettsia Combination Babesia Nairovirus

Federal TBD IPM Working Group

Participating agencies


(In alphabetical order)

- Centers for Disease Control and Prevention
- Department of Defense
- Environmental Protection Agency
- National Institutes for Health
- National Park Service
- National Science Foundation
- US Geological Survey
- US Department of Agriculture

2013

Federal Initiative: Tick-Borne Disease Integrated Pest Management White Paper

Other Partners

- Professional and academic societies
- Non-federal Lyme disease funding organizations (NGOs)
- Private foundations
- Public health agencies and organizations
- Patient advocacy/support groups
- Industry partners
- Others

Funding Initiatives?

- New federal FOAs
 - -NIH/NIAID
 - -DoD/CDMRP

- Private foundations
- Other Lyme disease
 NGOs

Tick-Borne Disease

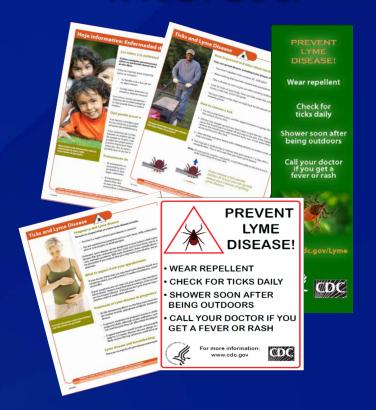
NEWS RELEASE

Released: April 25, 2016

Defense Health Program
Department of Defense Tick-Borne Disease Research Program
Funding Opportunities for Fiscal Year 2016

The Fiscal Year 2016 (FY16) Defense Appropriations Act provides \$5 million (M) to the Department of Defense Tick-Borne Disease Research Program (TBDRP) to support innovative and impactful research that addresses fundamental issues and gaps in tick-borne diseases. As directed by the Office of the Assistant Secretary of Defense for Health Affairs, the Defense Health Agency, Research, Development, and Acquisition (DHA RDA) Directorate manages the Defense Health Program (DHP) Research, Development, Test, and Evaluation (RDT&E) appropriation. The managing agent for the anticipated Program Announcements/Funding Opportunities is the Congressionally Directed Medical Research Programs (CDMRP).

Why are there not more funding initiatives for TBD IPM?


- A. It has not yet been demonstrated to be effective
- B. Better tools are needed
- C. A strong case has not yet been made based on the cost-savings associated with effective prevention
- D. All the above

Conclusions

- Tick-borne diseases in humans are increasing in numbers and distribution in the U.S.
- Safe and effective prevention tools are badly needed
- Effective prevention requires cooperation and collaboration involving multiple partners
- Greater emphasis must be placed on a national strategy or plan AND on the cost savings associated with disease prevention

Thank you for your time and interest!

Acknowledgments: Numerous staff of CDC's Division of Vector-Borne Diseases

The findings and conclusions in this report have not been formally disseminated by the Centers for Disease Control and Prevention and should not be construed to represent any agency determination or policy